Programming chemistry in DNA addressable bioreactors Supplementary information

Harold Fellermann and Luca Cardelli

Appendix A: Grammar and equivalence relations

States:

$$S := \emptyset + S \circ S + x_i : P \tag{1}$$

$$\mathsf{P} := 0 + \mathsf{P} + \mathsf{P} + \mathsf{q}^* (\mathsf{P}) + \mathsf{q} + m_i \qquad (2)$$

$$q := s + s^* \rhd s^* \tag{3}$$

$$S \circ (S' \circ S'') \equiv (S \circ S') \circ S'' \tag{6}$$

$$S \circ S' \equiv S' \circ S \tag{7}$$

$$S \circ \emptyset \equiv S \tag{8}$$

$$P + (P' + P'') \equiv (P + P') + P'' \tag{9}$$

$$P + P' \equiv P' + P \tag{10}$$

$$P + 0 \equiv P \tag{11}$$

$$q_1 + (q_2 + q_3) \equiv (q_1 + q_2) + q_3$$
 (12)

$$q_1 + q_2 \equiv q_2 + q_1 \tag{13}$$

$$q + \diamond \equiv q \tag{14}$$

$$s_1 + (s_2 + s_3) \equiv (s_1 + s_2) + s_3$$
 (15)

$$s_1 + s_2 \equiv s_2 + s_1 \tag{16}$$

$$s + \diamond \equiv s \tag{17}$$

(18)

$$x_i: P \circ x_i: P' \equiv x_i: P + P'$$

$$s_1^* \rhd s_2^* + s_1^* \longrightarrow s_2^* \tag{38}$$

$$\frac{s+s' \longrightarrow s''}{s+(s'+t) \in P \supset \longrightarrow (s''+t) \in P \supset}$$
(39)

$$\frac{q + q' \longrightarrow q''}{(q + q') (P) \longrightarrow q'' (P)}$$
 (40)

$$\frac{P \longrightarrow P'}{P + P'' \longrightarrow P' + P''} \tag{32}$$

$$\frac{P \longrightarrow P'}{q^* (P) \longrightarrow q^* (P')}$$
(33)

$$q^*(P) \longrightarrow q^*(P')$$

$$P \longrightarrow P'$$
(24)

$$\frac{P \longrightarrow P'}{x_i : P \longrightarrow x_i : P'} \tag{34}$$

$$\frac{S \longrightarrow S'}{S \circ S'' \longrightarrow S' \circ S''} \tag{35}$$

$$\frac{I:S\longrightarrow S'}{I:S\circ\bar{S}\longrightarrow S'\circ\bar{S}} \tag{50}$$

$$\frac{P \equiv P' \qquad P' \longrightarrow P''}{P \longrightarrow P'''} \qquad P'' \equiv P''' \qquad (36)$$

$$x_{i}: P \longrightarrow x_{i}: P'$$

$$S \longrightarrow S'$$

$$S \circ S'' \longrightarrow S' \circ S''$$

$$I: S \longrightarrow S'$$

$$I: S \circ \overline{S} \longrightarrow S' \circ \overline{S}$$

$$P \equiv P' \qquad P' \longrightarrow P'' \qquad P'' \equiv P'''$$

$$P \longrightarrow P'''$$

$$S \equiv S' \qquad S' \longrightarrow S'' \qquad S'' \equiv S'''$$

$$S \longrightarrow S'''$$

$$(35)$$

$$(36)$$

$$S \equiv S' \qquad S' \longrightarrow S'' \qquad S'' \equiv S'''$$

$$S \longrightarrow S'''$$

$$\frac{S_1 \equiv S_2}{S \circ S_1 \equiv S \circ S_2} \tag{19}$$

$$\emptyset \xrightarrow{\mathbf{feed}(x, m_i, \nu)} x : \emptyset \nu m_i \mathcal{D} \tag{41}$$

$$\frac{P_1 \equiv P_2}{x_i : P_1 \equiv x_i : P_2} \tag{20}$$

$$\frac{P_1 \equiv P_2}{P + P_1 \equiv P + P_2} \tag{21}$$

$$P_1 \equiv P_2$$

$$P_1 \equiv P_2$$

$$P + P_1 \equiv P + P_2$$

$$q_1 \equiv q_2$$

$$q^* + q_1 \equiv q^* + q_2$$

$$(21)$$

$$\frac{s_1 \equiv s_2}{s^* + s_1 \equiv s^* + s_2} \tag{23}$$

$$\frac{s_1^* \equiv s_2^*}{s_1^* \rhd s^* \equiv s_2^* \rhd s^*} \tag{24}$$

$$\frac{s_1^* \equiv s_2^*}{s^* \rhd s_1^* \equiv s^* \rhd s_2^*} \tag{25}$$

$$\frac{P_1 \equiv P_2}{q^* (P_1) \equiv q^* (P_2)} \tag{26}$$

$$\frac{q_1^* \equiv q_2^*}{q_1^* (P) \equiv q_2^* (P)}$$
 (27)

$$\emptyset \xrightarrow{\mathbf{feed_tag}(x,s,\nu)} x : \nu s \tag{42}$$

$$x:(s+q^*) \in P \supset \xrightarrow{\mathbf{move}(s,x,z)} z:(s+q^*) \in P \supset$$

$$\tag{43}$$

$$x: s \xrightarrow{\mathbf{move}(s, x, z)} z: s$$
 (44)

$$x: s+q^* \in P \supset \xrightarrow{\mathbf{tag}(x)} x: (s+q^*) \in P \supset (45)$$

$$x: q_1^* (P) + q_2^* (P') \xrightarrow{\mathbf{fuse}(x)} x: (q_1^* + q_2^*) (P + P')$$

$$(46)$$

$$x: P \xrightarrow{\mathbf{flush}(x)} \emptyset$$
 (47)

$$x: P \xrightarrow{\mathbf{wrap}(x,z)} z: (P)$$
 (48)

$$x:q^* @ P > \xrightarrow{\mathbf{burst}(x)} x:q^* @ > + P$$
 (49)

Programs:

$$\pi := \epsilon + I; \pi \qquad (51)$$

$$\epsilon; \pi = \pi \qquad (52)$$

$$(I; \pi); \pi' = I; (\pi; \pi') \qquad (53)$$

$$\langle \epsilon, S \rangle \longrightarrow S \qquad (54)$$

$$\frac{\langle \pi, S'' \rangle \longrightarrow S \qquad I : S' \longrightarrow S''}{\langle I; \pi, S' \rangle \longrightarrow S} \qquad (55)$$

$$\frac{\langle \pi, S'' \rangle \longrightarrow S \qquad (55)}{\langle I; \pi, S' \rangle \longrightarrow S} \qquad (56)$$

$$\frac{S \longrightarrow S' \qquad \langle \pi, S' \rangle \longrightarrow S''}{\langle \pi, S \rangle \longrightarrow S''} \qquad (57)$$

$$\frac{\langle \pi, S \rangle \longrightarrow S' \qquad S' \longrightarrow S''}{\langle \pi, S \rangle \longrightarrow S''} \qquad (58)$$

$$\frac{\langle \pi, S'' \rangle \longrightarrow S}{\langle I; \pi, S' \rangle \longrightarrow S} \qquad (56)$$

Appendix B: Proofs

Proof of Lemma 1

We prove the statement:

$$\langle \pi, S \rangle \longrightarrow S' \implies \langle \pi, S \circ \bar{S} \rangle \longrightarrow S' \circ \bar{S}.$$
 (60)

Given that there exists an inference tree that derives the clause $\langle \pi, S \rangle \longrightarrow S'$, we show that there exists a parallel inference tree that derives $\langle \pi, S \circ \bar{S} \rangle \longrightarrow S' \circ \bar{S}$. The statement is proven by induction over the structure of these derivation.

Proof:

- A. Assume that $\langle \pi, S \rangle \longrightarrow S'$ was derived by (54) in the last step. Hence, $\pi = \epsilon$ and S' = S. It trivially follows that $\langle \epsilon, S \circ \bar{S} \rangle \longrightarrow S \circ \bar{S}$, as axiom (54) holds for any state.
- B. Assume that $\langle \pi, S \rangle \longrightarrow S'$ was derived by (55) in the last step. Hence, $\pi = I'; \pi'$.

$$\frac{\langle \pi', S'' \rangle \longrightarrow S' \qquad I: S \longrightarrow S''}{\langle I; \pi', S \rangle \longrightarrow S'}$$

$$(55)$$

We have as induction hypothesis that $\langle \pi', S'' \rangle \longrightarrow S' \Longrightarrow \langle \pi', S'' \circ \bar{S} \rangle \longrightarrow S' \circ \bar{S}$. We can then use rule (55) to derive:

$$\frac{\left\langle \pi', S'' \circ \bar{S} \right\rangle \longrightarrow S' \circ \bar{S}}{\left\langle I; \pi', S \circ \bar{S} \right\rangle \longrightarrow S' \circ \bar{S}} \frac{I: S \longrightarrow S''}{\left\langle I; \pi', S \circ \bar{S} \right\rangle \longrightarrow S' \circ \bar{S}} (50)}{\left\langle I; \pi', S \circ \bar{S} \right\rangle \longrightarrow S' \circ \bar{S}}$$

Hence, if $\langle \pi', S'' \circ \bar{S} \rangle \longrightarrow S' \circ \bar{S}$ is derivable, $\langle I; \pi', S \circ \bar{S} \rangle \longrightarrow S' \circ \bar{S}$ is derivable by induction.

C. Assume that $\langle \pi, S \rangle \longrightarrow S'$ was derived by (56) in the last step. Hence, $\pi = I; \pi'$.

$$\frac{\langle \pi', S \rangle \longrightarrow S'}{\langle I; \pi', S \rangle \longrightarrow S'} \tag{56}$$

We have as induction hypothesis that $\langle \pi', S \rangle \longrightarrow S' \Longrightarrow \langle \pi', S \circ \bar{S} \rangle \longrightarrow S' \circ \bar{S}$. Rule (56) holds for any state, thus we can derive, with S substituted by $S \circ \bar{S}$:

$$\frac{\langle \pi', S \circ \bar{S} \rangle \longrightarrow S' \circ \bar{S}}{\langle I; \pi', S \circ \bar{S} \rangle \longrightarrow S' \circ \bar{S}}$$
(56)

Hence, if $\langle \pi', S \circ \bar{S} \rangle \longrightarrow S' \circ \bar{S}$ is derivable, $\langle I; \pi', S \circ \bar{S} \rangle \longrightarrow S' \circ \bar{S}$ is derivable by induction.

D. Assume that $\langle \pi, S \rangle \longrightarrow S'$ was derived by (57) in the last step.

$$\frac{S \longrightarrow S'' \quad \langle \pi, S'' \rangle \longrightarrow S'}{\langle \pi, S \rangle \longrightarrow S'}$$

$$(57)$$

We have as induction hypothesis that $\langle \pi, S'' \rangle \longrightarrow S' \Longrightarrow \langle \pi, S'' \circ \bar{S} \rangle \longrightarrow S' \circ \bar{S}$. We can then use rule (35) to derive:

$$\frac{S \longrightarrow S''}{S \circ \bar{S} \longrightarrow S'' \circ \bar{S}} \xrightarrow{(35)} \langle \pi, S'' \circ \bar{S} \rangle \longrightarrow S' \circ \bar{S}}{\langle \pi, S \circ \bar{S} \rangle \longrightarrow S' \circ \bar{S}} \xrightarrow{(57)}$$

Hence, if $\langle \pi, S'' \circ \bar{S} \rangle \longrightarrow S' \circ \bar{S}$ is derivable, $\langle \pi, S \circ \bar{S} \rangle \longrightarrow S' \circ \bar{S}$ is derivable by induction.

E. Assume that $\langle \pi, S \rangle \longrightarrow S'$ was derived by (58) in the last step.

$$\frac{\langle \pi, S \rangle \longrightarrow S'' \qquad S'' \longrightarrow S'}{\langle \pi, S \rangle \longrightarrow S'}$$

$$(58)$$

We have as induction hypothesis that $\langle \pi, S \rangle \longrightarrow S'' \Longrightarrow \langle \pi, S \circ \bar{S} \rangle \longrightarrow S'' \circ \bar{S}$. Again, we can use rule (35) to derive:

$$\frac{\langle \pi, S \circ \bar{S} \rangle \longrightarrow S'' \circ \bar{S}}{\langle \pi, S \circ \bar{S} \rangle \longrightarrow S' \circ \bar{S}} \xrightarrow{S'' \circ \bar{S} \longrightarrow S' \circ \bar{S}} (35)}{\langle \pi, S \circ \bar{S} \rangle \longrightarrow S' \circ \bar{S}}$$

Hence, if $\langle \pi, S \circ \bar{S} \rangle \longrightarrow S'' \circ \bar{S}$ is derivable, $\langle \pi, S \circ \bar{S} \rangle \longrightarrow S' \circ \bar{S}$ is derivable by induction.

F. Finally, assume that $\langle \pi, S \rangle \longrightarrow S'$ was derived by (59) in the last step.

$$\frac{S \equiv S'' \qquad \langle \pi, S'' \rangle \longrightarrow S''' \qquad S''' \equiv S'}{\langle \pi, S \rangle \longrightarrow S'} \tag{59}$$

We have as induction hypothesis that $\langle \pi, S'' \rangle \longrightarrow S''' \Longrightarrow \langle \pi, S'' \circ \bar{S} \rangle \longrightarrow S''' \circ \bar{S}$. Thus, we can infer:

$$\frac{S \equiv S''}{S \circ \bar{S} \equiv S'' \circ \bar{S}} (19) \qquad \langle \pi, S'' \circ \bar{S} \rangle \longrightarrow S''' \circ \bar{S} \qquad \frac{S''' \equiv S'}{S''' \circ \bar{S} \equiv S' \circ \bar{S}} (19) \\
\langle \pi, S \circ \bar{S} \rangle \longrightarrow S' \circ \bar{S} \qquad (59)$$

Hence, if $\langle \pi, S'' \circ \bar{S} \rangle \longrightarrow S''' \circ \bar{S}$ is derivable, then $\langle \pi, S \circ \bar{S} \rangle \longrightarrow S' \circ \bar{S}$ is derivable by induction.

Proof of Lemma 2

We prove the statement:

$$\langle \pi', S \rangle \longrightarrow S' \quad \wedge \quad \langle \pi'', S' \rangle \longrightarrow S'' \quad \Longrightarrow \quad \langle \pi'; \pi'', S \rangle \longrightarrow S''$$
 (61)

Proof: Again, the proof is performed inductively over the structure of the derivation, in particular the derivation of the clause $\langle \pi', S \rangle \longrightarrow S'$ for arbitrary derivations of the clause $\langle \pi'', S' \rangle \longrightarrow S''$.

A. Assume that $\langle \pi', S \rangle \longrightarrow S'$ was derived by (54) in the last step. Hence, $\pi' = \epsilon$ and S' = S.

$$\langle \epsilon, S \rangle \longrightarrow S$$
 (54)

For any π'' with $\langle \pi'', S' \rangle \longrightarrow S''$, we then have $\langle \pi'', S' \rangle \longrightarrow S'' = \langle \epsilon; \pi'', S' \rangle \longrightarrow S''$ because $\epsilon; \pi'' = \pi''$ by definition of ';' among programs.

B. Assume that $\langle \pi', S \rangle \longrightarrow S'$ was derived by (55) in the last step. Hence, $\pi' = I; \pi'''$. As induction hypothesis we have that $\langle \pi'''; \pi'', S' \rangle \longrightarrow S''$ is derivable for any π'' . We can then infer that

$$\frac{\langle \pi'''; \pi'', S' \rangle \longrightarrow S'' \qquad I: S \longrightarrow S'}{\langle I; \pi'''; \pi'', S \rangle \longrightarrow S''}$$
(55)

Hence, if $\langle \pi'''; \pi'', S' \rangle \longrightarrow S''$ is derivable, we know by induction that $\langle \pi'; \pi'', S \rangle \longrightarrow S''$ is derivable.

C. Assume that $\langle \pi', S \rangle \longrightarrow S'$ was derived by (56) in the last step. Hence, $\pi' = I; \pi'''$. We have as induction hypothesis that $\langle \pi'''; \pi'', S' \rangle \longrightarrow S''$ is derivable for any π'' . We can then infer that

$$\frac{\langle \pi'''; \pi'', S \rangle \longrightarrow S''}{\langle I; \pi'''; \pi'', S \rangle \longrightarrow S''}$$
(56)

Hence, if $\langle \pi'''; \pi'', S \rangle \longrightarrow S''$ is derivable, we know by induction that $\langle \pi'; \pi'', S \rangle \longrightarrow S''$ is derivable.

D. Assume that $\langle \pi', S \rangle \longrightarrow S'$ was derived by (57) in the last step. As induction hypothesis we have that $\langle \pi'; \pi'', S''' \rangle \longrightarrow S''$ is derivable for any π'' . We can then infer that

$$\frac{S \longrightarrow S''' \quad \langle \pi'; \pi'', S''' \rangle \longrightarrow S''}{\langle \pi'; \pi'', S \rangle \longrightarrow S''}$$
(57)

Hence, if $\langle \pi'; \pi'', S''' \rangle \longrightarrow S''$ is derivable, we know by induction that $\langle \pi'; \pi'', S \rangle \longrightarrow S''$ is derivable.

E. Assume that $\langle \pi', S \rangle \longrightarrow S'$ has been derived by (58) in the last step:

$$\frac{\langle \pi', S \rangle \longrightarrow \bar{S} \qquad \bar{S} \longrightarrow S'}{\langle \pi', S \rangle \longrightarrow S'}$$

$$(58)$$

We have the second hypothesis $\langle \pi'', S' \rangle \longrightarrow S''$, and we need to show that $\langle \pi'; \pi'', S \rangle \longrightarrow S''$. By second hypothesis and (57) with $\bar{S} \longrightarrow S'$ we obtain:

$$\frac{\bar{S} \longrightarrow S' \quad \langle \pi'', S' \rangle \longrightarrow S''}{\langle \pi'', \bar{S} \rangle \longrightarrow S''}$$
(57)

Hence, if we have as induction hypothesis that $\langle \pi', S \rangle \longrightarrow \bar{S}$ and $\langle \pi'', \bar{S} \rangle \longrightarrow S''$ then we can follow $\langle \pi'; \pi'', S \rangle \longrightarrow S''$.

F. Finally, assume that $\langle \pi', S \rangle \longrightarrow S'$ was derived by (59) in the last step:

$$\frac{S \equiv S_0 \qquad \langle \pi', S_0 \rangle \longrightarrow S_1 \qquad S_1 \equiv S'}{\langle \pi', S \rangle \longrightarrow S'}$$
(59)

We are in the case $\langle \pi', S_0 \rangle \longrightarrow S_1$ with $S \equiv S_0$ and $S_1 \equiv S'$. Our second hypothesis is that $\langle \pi'', S' \rangle \longrightarrow S''$, and we need to show that $\langle \pi'; \pi'', S \rangle \longrightarrow S''$. By (59) we then have also that $\langle \pi'', S_1 \rangle \longrightarrow S''$:

$$\frac{S_1 \equiv S' \quad \langle \pi'', S' \rangle \longrightarrow S''}{\langle \pi'', S_1 \rangle \longrightarrow S''}$$
(59)

By induction hypothesis we have that $\langle \pi', S_0 \rangle \longrightarrow S_1$ and $\langle \pi'', S_1 \rangle \longrightarrow S'' \Longrightarrow \langle \pi'; \pi'', S_0 \rangle \longrightarrow S''$. By (59) again, $\langle \pi'; \pi'', S \rangle \longrightarrow S''$.

Proof of Theorem 3

Proof: by induction over the structure of S.

A. Case $S \equiv \emptyset$.

This holds in the initial state. The program to create $S \equiv \emptyset$ is $\epsilon : \langle \epsilon, \emptyset \rangle \to \emptyset$.

B. Case $S \equiv S' \circ S''$ with $S', S'' \in \omega^+(\Pi_{\min})$.

By induction, there exist programs π' and π'' such that $\langle \pi', \emptyset \rangle \longrightarrow S'$ and $\langle \pi'', \emptyset \rangle \longrightarrow S''$. Lemma 1 then implies that $\langle \pi', \emptyset \circ \emptyset \rangle \longrightarrow S' \circ \emptyset$, and $\langle \pi'', S' \circ \emptyset \rangle \longrightarrow S' \circ S''$. It follows with lemma 2 that $\langle \pi'; \pi'', \emptyset \circ \emptyset \rangle \longrightarrow S' \circ S''$. But $\emptyset \circ \emptyset \equiv \emptyset$ and $S' \circ S'' \equiv S$, hence $\langle \pi'; \pi'', \emptyset \rangle \longrightarrow S$ due to inference rule (59).

- C. Case $S \equiv x_i : P$.
 - C.1. Subcase $P \equiv 0$.

This holds in the initial state. The program to create $S \equiv x_i : 0$ is $\epsilon : \langle \epsilon, \emptyset \rangle \to x_i : 0$.

C.2. Subcase $P \equiv P' + P''$.

This case can be reduced to case B. by means of the distributive relation (18): $x_i: P' + P'' \equiv x_i: P' \circ x_i: P''$.

- C.3. Subcase $P \equiv q \in P'$ with d(P') = 0.
 - C.3.1. Subsubcase $P \equiv \emptyset 0 \ D$.

This is achieved by the program $\pi = \mathbf{feed}(x_j, m, 0); \mathbf{transport}(x_j, x_i, x_k, \sigma)$ for arbitrary $m \in \mathcal{M}, x_j \in \mathcal{L}_{\mathbf{feed}, \mathbf{tag}}, x_k \in \mathcal{L}_{\mathbf{feed}, \mathbf{tag}}, \sigma \in \mathcal{T}.$

C.3.2. Subsubcase $P \equiv (m_i)$.

This is achieved by the program $\pi = \mathbf{feed}(x_j, m_j, 1); \mathbf{transport}(x_j, x_i, x_k, \sigma) \text{ for } x_j \in \mathcal{L}_{\mathbf{feed}}, x_k \in \mathcal{L}_{\mathbf{feed_tag}}, \sigma \in \mathcal{T}.$

C.3.3. Subsubcase $P \equiv (s_k)$.

Since $d(\langle s_k \rangle) = 2$, we have to show that $x_i : \langle s_k \rangle \notin \omega^+(\Pi_{\min})$. Observe that **feed** and **feed_tag** either raise the nesting level of a state from 0 to 1, or leave it invariant if it was higher than 1. The instructions **tag**, **move** and **fuse** leave the nesting level unaltered, whereas **flush** reduces the nesting level to 0 or leaves it invariant. Therefore, the instruction set I_{\min} does not contain any instruction that would increase the nesting level from 1 to 2. Therefore, $S \equiv x_i : \langle s_k \rangle$ is not constructable from \emptyset .

C.3.4. Subsubcase $P \equiv (P' + P'')$.

By induction, there exists a program π such that $\langle \pi, \emptyset \rangle \longrightarrow x_i : (P') \circ x_j : (P'')$. Then, for some $x_k \in \mathcal{L}_{\mathbf{feed_tag}}$, $\sigma \in \mathcal{T}$, the program $\pi; \pi'$ will produce S, where π' is the following program:

C.3.5. Subsubcase $P \equiv (s_k + q) \in P'$ D.

By induction, there exists a program π such that $\langle \pi, \emptyset \rangle \longrightarrow x_i : q \in P' \supset$. Then, for any

 $x_k \in \mathcal{L}_{\mathbf{feed_tag}}$, the program $\pi; \pi'$ will produce S, where π' is the program:

	$x_i:q \in P \ { t exttt{D}}$
$\mathbf{feed_tag}(x_j, s_k, 1)$	$x_i:q \in P \) \circ x_j:s_k$
$\mathbf{move}(x_j, x_i, s_k)$	$x_i:s_k+q$ (P)
$\mathbf{tag}(s_k)$	$x_i:(s_k+q)$ P \mathbb{D}

C.4. Subcase $P \equiv m_i$.

We have to show that $x_i: m_j \notin \omega^+(\Pi_{\min})$. First, observe that $d(x_i: m_j) = 0$. The only way to introduce m_j is by means of the command $\mathbf{feed}(x_i, m_j, 1)$ which will result in a nesting level of 1. As discussed in subcase C.3.3., the only means to decrease the nesting level is by means of the instruction \mathbf{flush} . However, \mathbf{flush} will transform the state $x_i: (m_j)$ into the empty state, which is not equivalent to S. Thus, there is no program in Π_{\min} able to generate $S \equiv x_i: m_j$. Therefore, $S \notin \omega^+(\Pi_{\min})$.

C.5. Subcase $P \equiv s_k$.

This is achieved by the program $\pi = \mathbf{feed_tag}(x_i, s_k, 1); \mathbf{move}(x_i, x_i, s_k), \text{ for any } x_k \in \mathcal{L}_{\mathbf{feed_tag}}.$

Proof of Theorem 4

Proof: The proof is identical to the one of theorem 3, where subsubcase C.3.3. is replaced by the more general subsubcase:

C.3.3' Subsubscase $P \equiv (P')$ with d(P') > 0, $P \not\equiv P' + P''$, and $P \not\equiv m_j$.

By induction, there exists a program $\pi \in \Pi_{\mathbf{wrap}}$, such that $\langle \pi, \emptyset \rangle \to x_j : P'$ for $x_j \in \mathcal{L}_{\mathbf{wrap.in}}$. The desired state is obtained by the program $\pi; \pi'$, where π' is the program

	$x_j:P'$
$\mathbf{wrap}(x_j, x_k)$	$x_k: \mathbb{Q}P'$
$\mathbf{transport}(x_k, x_i, x_l, \sigma)$	$x_i: \mathbb{Q} P' \mathbb{D}$

where $x_k \in \mathcal{L}_{\mathbf{wrap_out}}, x_l \in \mathcal{L}_{\mathbf{feed_tag}}, \sigma \in \mathcal{T}$.

Proof of Theorem 5

Proof: The proof is identical to the one of theorem 4 where case C.4. is replaced by:

C.4' Case $P \equiv m_i$.

By induction, there exists a program $\pi \in \Pi_{\mathbf{burst}}$, such that $\langle \pi, \emptyset \rangle \to x_i : \sigma(m_j)$. The desired state is obtained by the program $\pi; \pi'$, where π' is the program

	$x_i:\sigma$ (m_j)
$\mathbf{burst}(x_i)$	$x_i: \sigma $ $)+m_j$
$\mathbf{move}(x_i, x_k, \sigma)$	$x_i:m_j\circ x_k:\sigma \mathbb{C}$ \mathbb{D}
$\mathbf{flush}(x_k)$	$x_i:m_j$

Proof of Theorem 6

Proof: Again, we proof the theorem by induction over the structure of S.

A. Case $S \equiv \emptyset$.

Nothing needs to be done in this case: $\langle \epsilon, \emptyset \rangle \to \emptyset$.

B. Case $S \equiv S' \circ S''$.

Just as in the proof for theorem 3, we know by induction that there exist π', π'' such that $\langle \pi', S' \rangle \to \emptyset$ and $\langle \pi'', S'' \rangle \to \emptyset$. If follows through lemmas 1 and 2 that $\langle \pi', \pi'', S' \circ S'' \rangle \to \emptyset$.

- C. Case $S \equiv x_i : P$.
 - C.1. Subcase $P \equiv 0$.

Nothing needs to be done in this case: $\langle \epsilon, \emptyset \rangle \to \emptyset$.

C.2. Subcase $P \equiv P' + P''$.

This is structurally equivalent to $x_i: P' \circ x_i: P''$ and is therefore reduced to case B.

- C.3. Subcase $P \equiv q \in P' \supset$.
 - C.3.1. Subsubcase $q \equiv \diamond$.

	$x_i: (P)$
$\mathbf{feed_tag}(x_j,\sigma)$	$x_i: (P) \circ x_j: \sigma$
$\mathbf{move}(x_j, x_i, \sigma)$	$x_i:\sigma+\operatorname{d} P\operatorname{d}$
$\mathbf{tag}(x_i)$	$x_i:\sigma \mathbb{Q} P \mathbb{D}$

This reduces the problem to subsubcase C.3.2.

C.3.2. Subsubcase $q \equiv s_k + q'$.

For $x_i \in \mathcal{L}_{flush}$, the following program resets the state:

$$x_i: (s_k+q) \in P \supset$$

$$\mathbf{move}(x_i,x_j,s_k) \qquad \qquad x_j: (s_k+q) \in P \supset$$

$$\mathbf{flush}(x_j) \qquad \emptyset$$

C.4. Subcase $P \equiv m_i$.

If $x_i \in \mathcal{L}_{\mathbf{flush}}$, the program $\mathbf{flush}(x_i)$ will reset the state. Likewise, if $x_i \in \mathcal{L}_{\mathbf{wrap.in}}$, the program $\mathbf{wrap}(x_i, x_j)$ will transform the state into $x_j : (m_j)$ for any $x_j \in \mathcal{L}_{\mathbf{wrap.out}}$ and reduces the problem to subcase C.3.1.. On the other hand, if $x_i \notin \mathcal{L}_{\mathbf{flush}} \cup \mathcal{L}_{\mathbf{wrap.in}}$, we have to show that S is not an element of $\omega^-(\Pi_x)$. Note that all instructions \mathbf{feed} , $\mathbf{feed_tag}$ \mathbf{tag} , \mathbf{move} , \mathbf{burst} leave $x_i : m_j$ invariant under transition. Thus, there is no sequence of instructions that would transform $x_i : m_j$ into the empty state. Therefore, $x_i : m_j \notin \omega^-(\Pi_x)$ for $x_i \notin \mathcal{L}_{\mathbf{flush}} \cup \mathcal{L}_{\mathbf{wrap.in}}$.

C.5. Subcase $P \equiv s_k$.

For $x_i \in \mathcal{L}_{flush}$, the following program resets the state:

$$\begin{aligned} & x_i:s_k\\ \mathbf{move}(x_i,x_j,s_k) & & x_j:s_k\\ \mathbf{flush}(x_j) & & \emptyset \end{aligned}$$